AnandTech Storage Bench - Light

Our Light storage test has relatively more sequential accesses and lower queue depths than The Destroyer or the Heavy test, and it's by far the shortest test overall. It's based largely on applications that aren't highly dependent on storage performance, so this is a test more of application launch times and file load times. This test can be seen as the sum of all the little delays in daily usage, but with the idle times trimmed to 25ms it takes less than half an hour to run. Details of the Light test can be found here. As with the ATSB Heavy test, this test is run with the drive both freshly erased and empty, and after filling the drive with sequential writes.

ATSB - Light (Data Rate)
Orange is for the new drives, Blue is for the previous generation models

The new Western Digital 3D NAND SSDs don't show any improvement in average data rate on the Light test when the test is run on an empty drive, but performance when the drive is full is slightly better.

ATSB - Light (Average Latency)ATSB - Light (99th Percentile Latency)

The average and 99th percentile latencies generally show no meaningful change for the new 3D NAND SSDs over their planar TLC predecessors; both new and old generations fall within the normal range of variation for most of their competitors. The full-drive latency scores for the new Western Digital 3D NAND SSDs are slightly improved and the difference between full and empty drive performance is relatively small.

ATSB - Light (Average Read Latency)ATSB - Light (Average Write Latency)

Splitting the average latency by reads and writes doesn't reveal anything interesting about the WD and SanDisk drives, though it does show that the drives with poor full-drive performance differ in how they are affected: the Crucial MX300 has significantly higher read and write latency, while the OCZ VX500 is mostly affected on the write side and the OCZ Trion 150 is mostly affected on the read side.

ATSB - Light (99th Percentile Read Latency)ATSB - Light (99th Percentile Write Latency)

There's a small but clear improvement to 99th percentile read latency for the new WD/SanDisk drives, while the 99th percentile write latencies are quite similar for almost all of the drives in this bunch.

ATSB - Light (Power)

The energy usage differences between most of these SSDs are insignificant; only the Crucial MX300 stands out with clearly lower power consumption than the WD/SanDisk drives. The Samsung and Phison-based drives use more energy than most.

AnandTech Storage Bench - Heavy Random Performance
Comments Locked

52 Comments

View All Comments

  • Rictorhell - Friday, September 15, 2017 - link

    Samsung is slated to announce an updated line of new m.2 NVME SSD's at some point this month or in the 4th quarter. Their current m.2 lineup maxes out at 2tb and I've been wondering if they will release a 4tb m.2, even at a sky-high price.
  • Smell This - Thursday, September 14, 2017 - link

    Sammy's 'Data Migration' & 'Magician' tools have been bullet-proof for me.

    Not sure about 'Acronis True Image WD Edition' ... Acronis True Image, surprisingly, has let me down on several occasions.
  • metayoshi - Friday, September 15, 2017 - link

    I can only speak for myself, obviously, but I've been using Acronis True Image for years with no issue. I only use the most basic features like cloning disks and scheduled backups of full disks, but for those it works just fine.
  • mapesdhs - Thursday, September 14, 2017 - link

    Billy, any idea what causes those horrible latency spikes with the VX500? They're so big, I was surprised the commentary didn't mention it.
  • Billy Tallis - Thursday, September 14, 2017 - link

    Toshiba won't disclose controller architecture details, but all of the smaller capacities of the VX500 have no external DRAM, and the 1TB has only 256GB of external DRAM. We don't know how much memory is in the controller package itself, but the 1TB VX500 certainly has less memory than a typical mainstream SSD even though it's not truly DRAMless. The VX500 also uses SLC caching even though it's a MLC drive, and that tends to lead to greater performance variability (see the Crucial MX200).
  • Glaring_Mistake - Thursday, September 14, 2017 - link

    If I remember correctly the VX500 is entirely DRAMless for the smaller capacities that instead use a small amount of SRAM (think it's 32MB).
    But that was not enough for the 1TB drive so it differs from the other capacitites in that it has a small amount of DRAM at 256MB.
    That is still just one fourth of the usual amount of DRAM used for a drive of that capacity however.
    At any rate I believe that is the reason as to why latency may suffer a bit; not enough DRAM.
  • eddieobscurant - Friday, September 15, 2017 - link

    "Meanwhile, the SanDisk Ultra 3D offers higher write endurance ratings and lower power consumption for a slightly lower price. The Ultra 3D makes more sense for most consumers."

    How does it make more sense? The average consumer won't even use the 1/5th of the endurance ratings, but choosing the extra 2 years of warranty of samsung makes a lot of more sense.
  • Adramtech - Sunday, September 17, 2017 - link

    It's amusing to see people complain about the NAND & DRAM shortage and higher prices, and simutaneously say that there's "finally" something to compete with EVO. For years memory was so cheap it put scores of companies out of business and therefore less competition to compete with the EVO. If you want competitive products, these companies need to make money to drive multi-billion dollar Fab & R&D investments. Also, there is no price fixing, the AI revolution, big data, ADAS systems are eating up all the memory and storage. Not to mention HDDs switching over to SSD everywhere you look.
  • kavita - Monday, September 18, 2017 - link

    QA Testing the comments on Production.
  • msroadkill612 - Monday, September 18, 2017 - link

    Talk about tail wag the dog.

    That same expensive nand, can be rigged as 500MB/s sata ssd, OR, at about 5x+ that speed if the nvme (aka pcie ssdS) interface is used.

    What a waste.

    Why? Until very recent AMD TR, niggardly lane quotas on platforms (not unreasonably pre nvme ssdS) mean few have much room for devices that use 4 lanes each.

    Sata only sells because its the port folks have readily available on their current pc. Even so, settling for 1/5 of an expensive devices capabilities seems rich.

    i.e. - u r mad to buy sata.

    Far better to try hard to find a way of improving your interface than settle for gimped ssdS.

    Pcie3 nvme should be backwardly compatible w/ pcie2, so by running nvme on pcie2 lanes, they ares slower, but more than double the speed of, sata, and you have invested in a non gimped drives.

    While i am at it, If I were buying a ryzen, my plan would be one of each. 2x nvme ssds, on a mobo like msi's am4 x370 moboS, w/ 2x onboard nvme ports, but due to ryzen lane limits, the second must be pcie2. It yields a very fast ssd, and a very, very fast ssd. Not bad.

    Thats all your ryzen lanes used after the 16x lane gpu is counted, but u have stacks of ports on the chipset for other needs.

    Far better to get an m.2 port pcie adaptor card, lanes permitting, and an nvme ssd.

    It grates to hear common remark "oh, dont worry, you wont perceive the nvme speed difference". Yeah right.

    The champ 960 pro 500GB nvme is rated for 3400GB/s read seq & 2250~GB/s write. Like u r not going to notice if an app ever swaps out to disk or works on scratch files at such differing relative speeds. BS.

    Factor in also that sata ports from chipsets are handicapped in various ways, so it pays to investigate the exact nature of the sata port you use.

    A notion for some lane starved users to consider is getting by with 8 lanes for your 16 lane gpu, thus freeing up a juicy 8x pcie3 lanes. Even some gamers credibly say it works as well. Google it.

Log in

Don't have an account? Sign up now