System Performance

System performance on the QRD865 was a bit of a tricky topic, as we’ve seen that the same chipset can differ quite a lot depending on the software implementation done by the vendor. For the performance preview this year, Qualcomm again integrated a “Performance” mode on the test devices, alongside the default scheduler and DVFS behaviour of the BSP delivered to vendors.

There’s a fine line between genuine “Performance” modes as implemented on commercial devices such as from Samsung and Huawei, which make tunings to the DVFS and schedulers which increase performance while remaining reasonable in their aggressiveness, and more absurd “cheating” performance modes such as implemented by OPPO for example, which simply ramp up the minimum frequencies of the chip.

Qualcomm’s performance mode on the QRD865 is walking this fine line – it’s extremely aggressive in that it’s ramping up the chipset to maximum frequency in ~30ms. It’s also having the little cores start at a notably higher frequency than in the default mode. Nevertheless, it’s still a legitimate operation mode, although I do not expect very many devices to be configured in this way.

The default mode on the other hand is quite similar to what we’ve seen on the Snapdragon 855 QRD last year, but the issue is that this was also rather conservative and many popular devices such as the Galaxy S10 were configured to be more aggressive. Whilst the default config of the QRD865 should be representative of most devices next year, I do expect many of them to do better than the figures represented by this config.

PCMark Work 2.0 - Web Browsing 2.0

Starting off with the web browsing test, we’re seeing the big difference in performance scaling between the two chipsets. The test here is mostly sensible to the performance scaling of the A55 cores. The QRD865 in the default more is more conservative than some existing S855 devices, which is why it performs worse in those situations. On the other hand, the performance results of the QRD865 here are also extremely aggressive and receives the best results out there amongst our current device range. I expect commercial devices to fall in somewhere between the two extremes.

PCMark Work 2.0 - Video Editing

The video editing test nowadays is no longer performance sensitive and most devices fall in the same result range.

PCMark Work 2.0 - Writing 2.0

The writing test is amongst the most important and representative of daily performance of a device, and here the QRD865 does well in both configurations. The Mate 30 Pro with the Kirin 990 is the only other competitive device at this performance level.

PCMark Work 2.0 - Photo Editing 2.0

The Photo Editing test makes use of RenderScript and GPU acceleration, and here it seems the new QRD865 makes some big improvements. Performance is a step-function higher than previous generation devices.

PCMark Work 2.0 - Data Manipulation

Finally, the data manipulation test oddly enough falls in middle of the pack for both performance modes. I’m not too sure as to why this is, but we’ve seen the test being quite sensible to scheduler or even OS configurations.

PCMark Work 2.0 - Performance

Generally, the QRD865 phone landed at the top of the rankings in PCMark.

Web Benchmarks

Speedometer 2.0 - OS WebView WebXPRT 3 - OS WebView JetStream 2 - OS Webview

The web benchmarks results presented here were somewhat disappointing. The QRD865 really didn’t manage to differentiate itself from the rest of the Android pack even though it was supposed to be roughly 20-25% ahead in theory. I’m not sure what the limitation here is, but the 5-10% increases are well below what we had hoped for. For now, it seems like the performance gap to Apple’s chips remains significant.

System Performance Conclusion

Overall, we expect system performance of Snapdragon 865 devices to be excellent. Commercial devices will likely differ somewhat in terms of their scores as I do not expect them to be configured exactly the same as the QRD865. I was rather disappointed with the web benchmarks as the improvements were quite meagre – in hindsight it might be a reason as to why Arm didn’t talk about them at all during the Cortex-A77 launch.

CPU Performance & Efficiency: SPEC2006 Machine Learning Inference Performance
Comments Locked


View All Comments

  • ThreeDee912 - Monday, December 16, 2019 - link

    I feel you Andrei. I'm sitting here facepalming at these comments. I think a lot of people truly do not understand what SPEC was designed for or how energy efficiency works.
  • joms_us - Monday, December 16, 2019 - link

    To an average Joe or Jane, SPEC is a worthless basis of comparison.You can tell the sheep his phone has the fastest SoC on the planet and he will prolly believe you.

    If you can show an iPhone can finish a bunch of tasks in half a day and bunch of tasks on Android phone in a whole day then I will believe you that iPhone has twice the performance versus competition. But if you are just showing a nanosecond difference between two phones and thousand difference in benchmark scores then keep your palm on your face. =D
  • s.yu - Tuesday, December 17, 2019 - link

    I think Andrei has made it clear enough, perhaps not for you, but then Anandtech is not the site for you. Go visit Engadget or something you'll fit right in.
  • jospoortvliet - Monday, December 16, 2019 - link

    Same here. 🤦‍♀️🤦‍♂️🤦‍♀️🤦‍♂️
  • joms_us - Monday, December 16, 2019 - link

    You must have spent thousand of dollars on expensive phones because the SPEC result is higher on those phone? LOL

    You buy them to run SPEC? LOL
  • milli - Monday, December 16, 2019 - link

    I remember reading an article a couple years ago, where it was mentioned that a couple key BitBoys staff members left the company. The writing has been on the walls for years and recently Adreno architectural development has slowed down to a halt.
  • trivik12 - Monday, December 16, 2019 - link

    While Apple cores are faster, Android flagships will come shitloads of memory and so when it comes to daily tasks it will still keep in pace. S11+ will supposedly start at 12GB LPDDR5 ram vs 4GB ram for Apple flagships.

    At this point performance is not the issue for these android flagships considering the workloads of mobile phone. I would prefer them to make it more efficient working with Google at OS level. iphone's big advantage is how efficient it is relative to battery size of its phone.Key metrics are web browsing on Wifi and LTE plus video playback(streaming on netflix).
  • NetMage - Friday, December 27, 2019 - link

    iPhone is also efficient at RAM usage - native code versus JIT bytecode gives iOS a 1.5x to 2x less RAM advantage over Android.
  • cha0z_ - Friday, December 27, 2019 - link

    As already said - ios is a lot less RAM hungry and it's efficient. 4GB is quite enough + most android phones with a lot of memory loves to drop apps from there too. Not to mention that you will not notice that speed difference till you try to do something demanding power... and buying a phone for 1k euro just to browse FB is a bad buy decision anyway (for anyone except those who have money to burn ofc).

    But you will notice the efficiency difference. My iphone 11 pro max will last twice and more times the exynos note 9 I got in light workloads. The same iphone will last x3+ times more in heavy workloads while giving smooth and fast performance/gaming in contrary to the note 9.
  • quiksilvr - Monday, December 16, 2019 - link

    I will wait until they develop later processors with 5G built in.

Log in

Don't have an account? Sign up now