System Performance

Not all motherboards are created equal. On the face of it, they should all perform the same and differ only in the functionality they provide - however, this is not the case. The obvious pointers are power consumption, but also the ability for the manufacturer to optimize USB speed, audio quality (based on audio codec), POST time and latency. This can come down to the manufacturing process and prowess, so these are tested.

For X570 we are running using Windows 10 64-bit with the 1903 update as per our Ryzen 3000 CPU review.

Power Consumption

Power consumption was tested on the system while in a single ASUS GTX 980 GPU configuration with a wall meter connected to the Thermaltake 1200W power supply. This power supply has ~75% efficiency > 50W, and 90%+ efficiency at 250W, suitable for both idle and multi-GPU loading. This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency. These are the real world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

While this method for power measurement may not be ideal, and you feel these numbers are not representative due to the high wattage power supply being used (we use the same PSU to remain consistent over a series of reviews, and the fact that some boards on our test bed get tested with three or four high powered GPUs), the important point to take away is the relationship between the numbers. These boards are all under the same conditions, and thus the differences between them should be easy to spot.

Power: Long Idle (w/ GTX 980)Power: OS Idle (w/ GTX 980)Power: Prime95 Blend (w/ GTX 980)

The power consumption at full load is marginally higher than the MSI MEG X570 Ace by a single watt, but in both idle and long ide power states, the power consumption is considerably higher. The larger PCB and bigger controller set are contributing factors.

Non-UEFI POST Time

Different motherboards have different POST sequences before an operating system is initialized. A lot of this is dependent on the board itself, and POST boot time is determined by the controllers on board (and the sequence of how those extras are organized). As part of our testing, we look at the POST Boot Time using a stopwatch. This is the time from pressing the ON button on the computer to when Windows starts loading. (We discount Windows loading as it is highly variable given Windows specific features.)

Non UEFI POST Time

As with the MSI MEG X570 Ace model, the MSI MEG X570 Godlike also has extremely long POST times both at default settings and with controllers switched off. We did manage to make the POST time quicker by over two seconds by switching off networking and audio controllers, but this remains disappointing in comparison to other models tested with our AMD Ryzen 7 3700X processor.

DPC Latency

Deferred Procedure Call latency is a way in which Windows handles interrupt servicing. In order to wait for a processor to acknowledge the request, the system will queue all interrupt requests by priority. Critical interrupts will be handled as soon as possible, whereas lesser priority requests such as audio will be further down the line. If the audio device requires data, it will have to wait until the request is processed before the buffer is filled.

If the device drivers of higher priority components in a system are poorly implemented, this can cause delays in request scheduling and process time. This can lead to an empty audio buffer and characteristic audible pauses, pops and clicks. The DPC latency checker measures how much time is taken processing DPCs from driver invocation. The lower the value will result in better audio transfer at smaller buffer sizes. Results are measured in microseconds.

Deferred Procedure Call Latency

We test the DPC at the default settings straight from the box, and the MSI MEG X570 Godlike does perform noticeably better than the MSI MEG X570 Ace. The ASRock models do tend to have the upper hand when it comes to out of the box DPC latency. 

Board Features, Test Bed and Setup CPU Performance, Short Form
Comments Locked

116 Comments

View All Comments

  • ballsystemlord - Thursday, August 29, 2019 - link

    One spelling mistake:
    "MSI usually provide one of the better-looking firmware designs on the market,..."
    Missing "s":
    "MSI usually provides one of the better-looking firmware designs on the market,..."
  • zer0hour - Saturday, August 31, 2019 - link

    700 for a motherboard? Gotta get me some of that kool-aid.
  • Maxiking - Sunday, September 1, 2019 - link

    AMD scam confirmed

    https://youtu.be/DgSoZAdk_E8

    https://www.reddit.com/r/pcgaming/comments/cusn2t/...
  • nt300 - Sunday, September 1, 2019 - link

    Great Motherboard but not a great price tag.
  • cb88 - Tuesday, September 3, 2019 - link

    $700 for a board and it has this crap copper 10G-Base addon... no thanks I'll install a dual 10GBe SFP+ card thanks + microtik 10GBe switch for under $300 including cables... for the price of Cat6A and a 10Gbaset router/switch I could up to an even faster SFP+ switch with more ports.... the microtik switch is even very quiet unlike most other solutions.

Log in

Don't have an account? Sign up now