AnandTech Storage Bench - The Destroyer

The Destroyer is an extremely long test replicating the access patterns of very IO-intensive desktop usage. A detailed breakdown can be found in this article. Like real-world usage, the drives do get the occasional break that allows for some background garbage collection and flushing caches, but those idle times are limited to 25ms so that it doesn't take all week to run the test. These AnandTech Storage Bench (ATSB) tests do not involve running the actual applications that generated the workloads, so the scores are relatively insensitive to changes in CPU performance and RAM from our new testbed, but the jump to a newer version of Windows and the newer storage drivers can have an impact.

We quantify performance on this test by reporting the drive's average data throughput, the average latency of the I/O operations, and the total energy used by the drive over the course of the test.

ATSB - The Destroyer (Data Rate)

The average data rate of the 480GB Optane SSD 900p on The Destroyer is a few percent higher than the 280GB model scored, further increasing the lead over the fastest flash-based SSDs.

ATSB - The Destroyer (Average Latency)ATSB - The Destroyer (99th Percentile Latency)

The 480GB Optane SSD 900p shows a substantial drop in average latency relative to the 280GB model, allowing it to score better than any flash-based SSD. For 99th percentile latency the 480GB model scores slightly worse than the 280GB, but both are still far ahead of any competing drive.

ATSB - The Destroyer (Average Read Latency)ATSB - The Destroyer (Average Write Latency)

The two capacities of Optane SSD 900p have essentially the same average read latency that is less than half that of any flash-based SSD. For average write latency, the 480GB model sets a new record while the 280GB performed worse than it did the first time around, but still faster than anything other than the Samsung 960 PRO.

ATSB - The Destroyer (99th Percentile Read Latency)ATSB - The Destroyer (99th Percentile Write Latency)

The 99th percentile read and write latency scores for the Optane SSD 900p are all substantially better than any flash-based SSD, even though the 280GB's results again show some variation between this test run and our original review. The 99th percentile read latency scores are particularly good, with the Optane SSDs around 0.5ms while the best flash-based SSDs are in the 1-2ms range.

Introduction AnandTech Storage Bench - Heavy
Comments Locked


View All Comments

  • ddriver - Friday, December 15, 2017 - link

    Which is MLC...

    Samsung realized nobody is catching up in the nand market and decided to push consumer, high end and mainstream enterprise a notch down to TLC.

    So now that MLC is only a "high end enterprise" thing in their portfolio, they decided to pimp it up with a new moniker - z-nand. Alas, it is just good old MLC with a barely incremental controller. And claim that it has anything to do with SLC performance - which it does as much as an a race horse harness makes an old donkey faster.

    They REALLY aren't trying.
  • mapesdhs - Monday, December 18, 2017 - link

    Do you have a link to Intel's original PR articlea about this tech? Other people keep saying you're wrong, but if there is indeed a piece of Intel PR that at least implied an initial launch would provide the sort of speed gains you mention, then you absolutely have a point.
  • jospoortvliet - Thursday, December 21, 2017 - link

    I have no link, but as pointed out below, there is a fight with a strawman going on here. Intel certainly talked about 1000x improvement in latency of flash vs Optane - at that point they are talking about time it takes for a single flash cell vs an Optane cell. As Flash can only write to a block or more, it is far far slower, optane can address a single cell directly. And sure, that might very well be 1000x faster in theory - and even already in this very first Optane SSD.

    But, just like if you make one component (eg a piston) in a car engine 1000x faster the entire car won't drive 1000x faster - the other components also contribute to speed, as do external factors like, you know, wind, asphalt... So the car gets 10% faster as a whole. You see the same here: even if that one part is 1000x faster, flash controllers use a ram cache and splitting data over a dozen channels to overcome the inherent limitation of flash while the NVME protocol and PCIExpress puts limits at latency improvements, so the end result is that the Optane PCIE devices are occasionally >10x faster than SSD's but generally a factor 3-5.

    Of course, if you put them in a DDR4 slot, they'll be unleashed a bit more and would beat a DDR4 SSD solution probably by a factor 30-50 in most cases with peaks of 100x. Still not 1000 and it'll never be...

    So, in short, even if Intel is 100% correct and an individual cell responds 1000x faster, its response has to be mediated by the controller, go over a data bus etc etc. so you'll never measure it like that.
  • jospoortvliet - Thursday, December 21, 2017 - link

    And of course Intel just screams '1000x faster response time' without very clearly identifying they're talking about a theoretical maximum. Well, it is marketing. You take the best looking numbers that are defensible and use them.
  • eddman - Thursday, December 21, 2017 - link

    No, intel claimed it for 3D xpoint, NOT optane. Xpoint is the name of the tech, optane is the storage devices based on the tech.
  • Kidster3001 - Wednesday, January 3, 2018 - link

    Intel never claimed Optane to be 1000x faster than anything. The 1000x faster was in reference to 3D-XPoint. XPoint = the memory cells; Optane = the SSD product line. Two completely different things.
  • ddrіver - Saturday, December 16, 2017 - link

    I'm not myself when I drink.
  • farazgomot - Saturday, December 16, 2017 - link

    I fully agree, why almost everybody is caustic to ddriver when he correctly is critic to only the marketing hype , not that the product is in any way bad ( except for the high price/ capacity)
  • lmcd - Saturday, December 16, 2017 - link

    He's arguing semantics when ridiculous performance claims are an industry norm. He's argued those semantics for 5 straight articles, and arguing with literally every comment he can find this very point. It's in the ballpark of 100 belligerent comments on 5 articles, which frankly is far closer to "caustic" than our collective treatment. It's fine if he states his opinion, but we're tired of being screamed at.
  • Reflex - Saturday, December 16, 2017 - link

    The problem with ddriver is that he is arguing against a strawman that was built up in his own mind. Optane was never promised to produce products that could deliver 1000x performance boosts in the first generation. PCM is itself as much as 1000x faster than traditional NAND for many operations while being orders of magnitude more durable.

    However the fact that you are using Optane/PCM does not in some way fix the fact that controllers aren't capable of that kind of performance yet, that PCIe bandwidth is way behind that level, that system memory, chipsets and CPU's couldn't keep up with that, that the software stack is not optimized for that, etc etc.

    Intel delivered, mostly on time and for a cheaper price than is typical for a first gen of a new technology. Since they have previously stated what the performance capabilities of Optane/PCM are, the focus now will be on other aspects of the platform in order to enable that capability. This removes a major performance roadblock as they move towards an optical bus and optical chips, and ensures that system storage is not the long pole.

    I'm fairly excited, its been ten years since any major change in storage has occurred and now it is finally here. And its reasonably priced for what it delivers from the get go.

Log in

Don't have an account? Sign up now