The ThunderX SoCs

Below you can see all the building blocks that Cavium has used to build the ThunderX.

Depending on the target market, some of these building blocks are removed to reduce power consumption or to increase the clockspeed. The "Cloud Compute" version (ThunderX_CP) that we're reviewing today has only one accelerator (vSwitch offload) and 4 SATA ports (out of 16), and no Ethernet fabric.


But even the compute version can still offer an 8 integrated 10 Gbit Ethernet interfaces, which is something you simply don't see in the "affordable" server world. For comparison, the Xeon D has two 10 Gbit interfaces.

The storage version (_ST) of the same chip has more co-processors, more SATA ports (16) and an integrated Ethernet fabric. But the ThunderX_ST cuts back on the number of PCIe lanes and might not reach the same clockspeeds.


There is also a secure compute version with IP Sec/SSL accelerators (_SC) and network/telco version (_NT). In total there are 4 variants of the same SoC. But in this article, we focus on the version we were able to test: the CP or Cloud Compute.

Introducing ThunderX: 48 ARM Cores Xeon D vs ThunderX: Supermicro vs Gigabyte
Comments Locked


View All Comments

  • willis936 - Thursday, June 16, 2016 - link

    Are you sure that the there are more cores at lower clocks to keep voltage lower? Power consumption is proportional to v^2*f.
  • ddriver - Friday, June 17, 2016 - link

    Say what? Go back, read my previous post again, and if you are going to respond, make sure it is legible.
  • willis936 - Friday, June 17, 2016 - link

    Alright well if you don't understand why many slower cores are more power efficient even if there was a 0 cycle penalty on context switching then you aren't worth having this discussion with.
  • blaktron - Wednesday, June 15, 2016 - link

    48 cores of server processing on 16mb of l2 and 4 channels of RAM? What is this thing designed for. Will be like running single channel celerons as server processors, so decent hypervisor hosts are out, and so is any database work more complex than dynamic web pages.
  • Haravikk - Wednesday, June 15, 2016 - link

    Facebook is specifically mentioned as being interested in this, so dynamic web-pages is definitely a valid use-case here. HHVM for example is pretty light on memory usage (so is PHP7 now), especially in high demand cases where you're really only running a single set of scripts, probably cached in a compiled form, plus both scale really well across as many cores as you can throw at them.

    Things like nginx and MariaDB will be the same, so they're absolutely intended use-cases for this kind of chip, and I think it should be very good at it.
  • blaktron - Wednesday, June 15, 2016 - link

    With no L3 and slow RAM access I'm not sure where you think the scrips will cache. Assuming you ran them on bare metal (horrifying waste of compute) there would be enough, but if you had docker instances or quick spin vms doing your work (as 99% of web servers are) then each instance will only get the tiniest slice of cache to work with. It would be like running your servers, as I said, on a bank of celerons. Except celerons have L3 and don't carry 12 cores per memory channel.
  • spaceship9876 - Wednesday, June 15, 2016 - link

    Hopefully someone will release a server chip using 64 cortex A73 cpu cores, i'm pretty sure the cortex a73 will be more power efficient than xeon d. Xeon d beats cortex a57 in power efficiency but i'm pretty sure than cortex a72 will be similar and cortex a73 will beat it.
  • Flunk - Wednesday, June 15, 2016 - link

    ARM with ambition?

    I've heard that before, nothing came of it.
  • CajunArson - Wednesday, June 15, 2016 - link

    Interesting article. This does appear to be the first semi-credible part from an ARM server vendor.

    Having said that, the energy efficiency table at the end should put to rest any misconceived notions that ARM is somehow magically energy efficient while X86 isn't.

    Considering that Xeon E5-2690 v3 is a 4.5 year old Sandy Bridge part made on a 32 nm process and it still has better performance-per-watt than the best ARM server parts available in 2016, it's pretty obvious that Intel has done an excellent job with power efficiency.
  • kgardas - Wednesday, June 15, 2016 - link

    2 CajunArson: (1) you can't compare energy efficiency of CPUs made on different nodes. 28nm versus 14nm? This is apple to oranges. (2) Xeon E5-2690 *v3* is Haswell and not Sandy Bridge and it's not 4.5 years definitely.

Log in

Don't have an account? Sign up now